Defect Engineering in Few‐Layer Phosphorene
نویسندگان
چکیده
منابع مشابه
Producing air-stable monolayers of phosphorene and their defect engineering
It has been a long-standing challenge to produce air-stable few- or monolayer samples of phosphorene because thin phosphorene films degrade rapidly in ambient conditions. Here we demonstrate a new highly controllable method for fabricating high quality, air-stable phosphorene films with a designated number of layers ranging from a few down to monolayer. Our approach involves the use of oxygen p...
متن کاملElectronic structure engineering of various structural phases of phosphorene.
We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vert...
متن کاملψ-Phosphorene: a new allotrope of phosphorene.
Based on the crystal structure prediction, we propose a new allotrope of phosphorene, ψ-phosphorene (ψ-P), with a porous structure, which is both thermally and dynamically stable in comparison with the previously reported allotropes. Due to its unique atom configuration, ψ-P has highly orientation-dependent mechanical properties and excellent flexibility. Calculations using the HSE functional p...
متن کاملOxygen defects in phosphorene.
Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which i...
متن کاملTiling phosphorene.
We present a scheme to categorize the structure of different layered phosphorene allotropes by mapping their nonplanar atomic structure onto a two-color 2D triangular tiling pattern. In the buckled structure of a phosphorene monolayer, we assign atoms in "top" positions to dark tiles and atoms in "bottom" positions to light tiles. Optimum sp3 bonding is maintained throughout the structure when ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Small
سال: 2018
ISSN: 1613-6810,1613-6829
DOI: 10.1002/smll.201704556